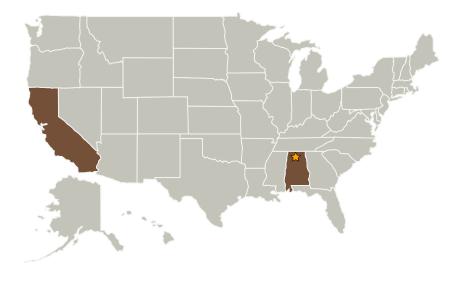
## Time-stepped & discrete-event simulations of electromagnetic propulsion systems, Phase II




Completed Technology Project (2002 - 2002)

#### **Project Introduction**

The existing plasma codes are ill suited for modeling of mixed resolution problems, such as the plasma sail, where the system under study comprises subsystems with diverse modeling paradigms (e.g., fluid, kinetic) at differing levels of temporal and spatial resolution. Such complex systems are not unique to propulsion studies, but are commonly encountered in wide variety of fields. In Phase I, we were able to develop and successfully test the core technology for multi-resolution modeling within two distinct computational paradigms. By introducing a temporal mesh, we successfully overcame a major obstacle in the use of time-stepped simulations for multi-resolution problems. However, even more significant is our finding that discrete event simulation methodology works quite well for many-body systems such as plasmas with several orders of magnitude performance advantage over equivalent time-stepped simulations. The importance of this result cannot be overstated as it will have immediate repercussions in all fields where timestepped modeling are currently used. Using these early versions of our code, we were able to address a number of outstanding issues in regards to the feasibility of plasma sails. Our objectives for Phase II are (i) to fully develop the codes, (ii) address the issues regarding the feasibility of plasma sails such as expansion of the magnetic bubble by the plasma source and the resulting drop-off of the magnetic field strength with radial distance, and (iii) prepare plans for marketing our technology in Phase III.

#### **Primary U.S. Work Locations and Key Partners**





Time-stepped & discrete-event simulations of electromagnetic propulsion systems, Phase II

#### **Table of Contents**

| Project Introduction          |   |  |
|-------------------------------|---|--|
| Primary U.S. Work Locations   |   |  |
| and Key Partners              | 1 |  |
| Organizational Responsibility |   |  |
| Project Management            |   |  |
| Technology Areas              | 2 |  |

## Organizational Responsibility

### Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Center / Facility:**

Marshall Space Flight Center (MSFC)

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer



#### Small Business Innovation Research/Small Business Tech Transfer

# Time-stepped & discrete-event simulations of electromagnetic propulsion systems, Phase II



Completed Technology Project (2002 - 2002)

| Organizations<br>Performing Work    | Role                       | Туре           | Location                 |
|-------------------------------------|----------------------------|----------------|--------------------------|
| ★Marshall Space Flight Center(MSFC) | Lead<br>Organization       | NASA<br>Center | Huntsville,<br>Alabama   |
| Scibernet, Inc.                     | Supporting<br>Organization | Industry       | San Diego,<br>California |

| Primary U.S. Work Locations |            |
|-----------------------------|------------|
| Alabama                     | California |

### **Project Management**

**Program Director:** 

Jason L Kessler

**Program Manager:** 

Carlos Torrez

**Project Manager:** 

Dennis L Gallagher

**Principal Investigator:** 

Homa Karimabadi

### **Technology Areas**

#### **Primary:**

- TX11 Software, Modeling, Simulation, and Information Processing
  - └─ TX11.3 Simulation
    - └─ TX11.3.6 Uncertainty

       Quantification and

       Nondeterministic

       Simulation Methods

